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a b s t r a c t

The pattern of steady multimode flow of a viscous incompressible fluid in a plane diverging channel is
constructed and investigated. It is shown that odd-mode flows have velocity profiles that are symmetrical
about the axis of the channel and from one to three different flows with a fixed number of modes exist. The
even-mode flows are asymmetric and exist as pairs. The existence of a denumerable set of finite ranges
adjoining one another, in which a single-type of complex bifurcation of the flow occurs, is established in
the case of an unbounded range of values of the Reynolds number. As the Reynolds number increases,
transitions to flows with an increasing number of modes, containing domains of forward and backward
flows, occur successively. Flow patterns with a smaller number of modes do not occur. An increase in the
number of an range corresponding to an increase in the Reynolds number leads to an unlimited increase
in the length of the range and the number of modes of permissible flows.

© 2008 Elsevier Ltd. All rights reserved.

1. Formulation of the problem and introductory remarks

The steady flow of a viscous incompressible fluid in a plane diverging channel1–4 is investigated, that is, in the domain

(1.1)

where r and � are polar coordinates and � is the semi-aperture angle. No-slip conditions are satisfied on the channel walls r > 0, � = ±�
and, when r = 0, the flow has a source-type singularity. In the classical formulation of the problem, due to Jeffery1 the power of the source
(we subsequently assume that Q > 0) is assumed to be specified, that is, the flow rate across any section r = conts > 0 of the domain � (1.1)
is fixed.

Note that this formulation of the problem (see below) and its solution are traditionally also associated with the investigations of Hamel5

or (more frequently) are referred to as the Jeffery–Hamel problem and Jeffery–Hamel flows.2–4,6–15 However, an analysis of the results in
Ref. 5 suggests that they do not contain a rigorous formulation of the boundary value problem with the condition of constancy of the fluid
flow rate and boundary conditions. There is no concept of a Reynolds number in it and the possibility of radial and spiral plane flows is
analysed. An implicit analytical solution of the problem of plane radial, circular and spiral flows was obtained by Jeffery.1

The system only permits the introduction of two dimensionless parameters: the aperture angle of the diverging channel 2� and the
Reynolds number Re = �Q/�, where � is the density and � is the dynamic viscosity of the fluid. This property does not enable the equations
of motion to be reduced to a completely dimensionless form1–4 but enables a self-similar solution to be constructed with a radial velocity
field of the form

(1.2)

This solution satisfies the incompressibility condition in the case of a dimensionless, as yet unknown, smooth function V(�).
The relations,1–4 defining the velocity profile V(�),

(1.3)
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(1.4)

follow from the Navier–Stokes equations, the no-slip conditions on the walls of the diverging channel (1.1) and the constancy of the
fluid flow rate.

Boundary-value problem (1.3) and the integral condition (1.4) serve to find the integration constants and the unknown C for specified
values of the parameter � and Re. The pressure p, corresponding to a solution of the form of (1.2), is expressed in terms of the quantities V
and C which have been found:

(1.5)

According to expression (1.5), the constant C defines the pressure p(±�) on the walls of the diverging channel.
The non-linear boundary value problem (1.3) with the additional integral condition (1.4) is symmetrical under the transformation

� → −� → −�. However, it has been explicitly established by the authors (this property was noted earlier, see Refs. 2, 3, etc) that, in the case
of flows in a converging channel Q < 016,17 and a diverging channel Q > 018,19, this problem, together with symmetric odd-mode solutions,
has even-mode solutions which are asymmetric about the axis. This property is a consequence of the axial symmetry of the problem and
it testifies to the channel walls (boundaries) “having equal rights” We note that a recent, detailed and constructive analysis of the effect of
symmetry properties in the Navier–Stokes equations is available.4

The pattern of bifurcations of single-mode, purely radial flows for a diverging channel has been constructed by the authors19 for
comparatively small values of Re�(2�Re ≤ 6�) and a wide range of variation in the semi-aperture angle �(0 < � ≤ �/2). The announcement18

of investigations for a small semi-aperture angle 0 < � ≤ 10◦ suggests that, when Re is increased, only multimode flows, containing domains
of forward and backward flows, are possible. It has been established that the number of modes of possible flows increases in a specific
manner (see later) and has a lower limit. A clear picture of the bifurcation of the multimode flows of an incompressible viscous fluid in
a plane diverging channel, which does not exist in the literature, is presented below on the basis of a complete, rigorous solution of the
Jeffery problem.

We shall get rid of the integral relation in problem (1.3), (1.4) by introducing of an unknown Z which characterizes the flow rate of the
fluid in the angle � ≥ −�. By differentiation of the equation for V, boundary value problem (1.3) with integral condition (1.4) is reduced to
the equivalent fourth-order boundary value problem

(1.6)

It is required to construct the solution V, V′, C of problem (1.3), (1.4) or the solution V, V′, V′′, Z of the equivalent problem (1.6) and, also,
to find the velocity �(r,�) (1.2), the pressure p (1.5) and the other kinematic and dynamic characteristics of the flows as a function of r and �
and the governing parameters � and Re for the whole domain � (1.1) when Re > 0, 0 < � ≤ �. Note that, in the literature (see Refs. 1–3, etc),
it is usually assumed that Q > 0 for a flow in a diverging channel (source-type singularity). In the case of a converging channel (a sink-type
singularity), it is necessary to change the plus sign to a minus sign in expressions (1.2), (1.3) and (1.6) in front of the coefficients of Q and
Re respectively and, also, to change the sign of the magnitude of the pressure p (1.5).

2. Numerical and analytical solution of the Jeffery boundary value problem

The formal analytical solution of problem (1.3), (1.4) using a first integral leads to elliptic functions and integrals, which depend on three
unknown parameters1–3,8. A system of two transcendental equations that also contain two independent parameters (� and Re), which
can be specified in the solution, can be obtained for determining the unknown integration constants. Note that not one of the above-
mentioned parameters is expressed explicitly in terms of the remaining parameters, which does not permit one to reduce the dimension of
the system and to analyse it. This solution is essentially implicit and its use leads to fundamental computational difficulties resulting from
the degeneration of the equations when Re → 0, Re → ∞ and, also, from the bifurcations of the solutions for a denumerable set of positive
values of the number Re. Furthermore, the dependence of the solution on the angle � is also non-regular.16–19

These computational difficulties are aggravated by the insufficient accuracy (10−4–10−6, whereas an accuracy of 10−8–10−10 and higher
is required) of the tabulated data for elliptic functions and integrals. Hence, the procedure of reduction to a system of transcendental
equations is unnecessary since it hinders a constructive solution of the boundary value problem.

The incompleteness of its investigation is explained by the lack of adequate, high-accuracy methods for calculating the solutions of a
problem containing internal and boundary singularities. An analogous situation arises when investigating the solution in the case of flows
in a converging channel (Q < 0) which has been previously studied in detail in Refs, 16 and 17. The numerical results known in the literature
involve the solution of boundary-value problem (1.3), (1.4), ignoring the integral condition (1.4). In this approach, the fluid velocity on the
axis of the diverging or coverging channel is usually specified (see Refs. 6, 7, etc), which artificially constricts the class of solutions.

An approach has been developed for the direct solutions of non-linear boundary-value problems of the type (1.3), (1.4) and (1.6) on the
basis of which a constructive numerical-analytical method for calculating the unknown constants is proposed.20 It contains an accelerated
convergence algorithm and a procedure for continuation with respect to the parameters. The normalized unknown functions y and z, the
argument x and the unknown parameters � and 	, i.e.,

(2.1)
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are introduced in relations (1.3) and (1.4) to standardize the calculations and to make them more convinient. These quantities are
uniquely related to the initial V, Z, Q, V′(−�), C. The unknown functions y, y′, z and the parameters � and 	 are determined by solving the
non-linear boundary value problem for fixed values of the parameters a = 4� and b = −2�Re:

(2.2)

Problem (2.2) contains four unknown parameters: the three constants of integration of the differential equations (the value of � is taken
as one of them) and the parameter 	. Four null boundary conditions when x = 0, 1 are available for finding them.

Suppose an approximate solution (which is not necessarily the exact solution) of boundary-value problem (2.2) is known for the specified
values a = a0, b = b0. We then apply the method of accelerated convergence algorithm20 for a = a0 and the new value b = b0 + 
b, where 
b is
a sufficiently small quantity. It consists of refining the unknowns � and 	 using a recursion scheme.

Calculations confirm the rapid convergence and efficiency of the algorithm which enables one, without the use of transcendental
expressions, to carry out high accuracy operational mass calculations (see later). They enable a complete investigation of flows to be
carried out, including the determination of their velocity profile16,17. The basic result involves finding the values of the parameters � and
	 with a geometrical and physical meaning which are required to integrate Cauchy problem (2.2). The pattern of bifurcations, depending
on the parameters � and Re, is of intrinsic interest. There are no such results in the literature.

The relations �(b), 	(b) were constructed as the result of calculations for different values of the angle � (that is, of the parameter a) and
a set of values of the parameter b = −2�Re. They enable one to determine the velocity profile according to the first formula of (2.1) as the
solution of Cauchy problem (2.2).

All the kinematic and dynamic characteristics of the flows are calculated on this basis and a complete qualitative investigation of the
flows in the diverging channel is carried out. The results of the calculations of the velocity profiles and the distribution of the pressure
forces on the walls were obtained earlier for a converging channel17,20. In particular, the pressure p is determined from the formulae (1.4)
and (2.1):

(2.3)

The quantities y(x, a, b) and �(b), 	(b) are assumed to be calculated using relations (2.1) and (2.2) and the previously described
Scheme.18–20 It follows from an analysis of the last dimensionless factor of expression (2.3) that the magnitude of the pressure p increases
without limit when the parameter |b| is reduced.

3. Analysis of flows in a diverging channel

The complete pattern of the dependence of the parameters � and 	 on the specified values of � ∈ (0, �) and b ≤ 0 is extremely diverse
and its detailed description is difficult. As in the case of flows in a converging channel,17 it is convenient to subdivide the range of values of
the semi-aperture angle of the diverging channel � into several ranges corresponding the different qualitative behaviour of the variables
�(b) and 	(b) in the procedure of continuation with respect to the parameter b < 0, |b| 	 1:

(3.1)

In the case of the critical value �*, where �* ≈ 2.2467 is the positive root of the equation tg2� = 2�, a solution does not exist for b = 0
(Re = 0) and a continuation of the solution with respect to the parameter �, ���* is possible for b /= 0. The limiting values � → +0, �* ± 0
and � = �/2, � (3.1) are also interesting from a hydrodynamic point of view.

Together with the solutions which are regularly continued with respect to b, that is, with respect to Re in the domain of values of �
(3.1), We established the existence of a set of multimode flows in a converging channel17 and diverging channel19 which are not continued
when Re → 0.

It is convenient to illustrate the pattern of the bifurcations of steady flows in a diverging channel when Re → ∞, which is unknown
in the literature, in the case of slightly diverging walls (the angle � in the range from 5◦ to 30◦) which is of interest in its own
right.

The results of calculations using the technique proposed earlier,18,20 when � = 10◦ ≈ 0.1745 are presented later. For values of � ∈ (0,
10◦), the behaviour of the curves �(b) and 	(b) turns out to be extremely close to the case when � = 10◦. The qualitative similar-
ity holds up to values of � < 90◦.19 Note that, for � = 90◦, the flow domain is a half-plane with an aperture. When b → −∞, that is,
when Re → −∞, sequences of triple bifurcation points b(n)

∗ and turning points b(n)*(n = 1,2,. . .) of the curves �(n)
k

(b) and 	(n)
k

(b) arise,
and sequences of the corresponding values of b, which will be described below. The superscript (n) indicates the number of the
range, and the subscript k indicates the corresponding number of modes, that is, the number of domains of the forward and backward
flows.

The flow pattern is quite complicated18 and requires a careful step-by-step presentation. In essence (and traditionally), it is assumed
to be natural to begin it from the low values of n = 1, 2 which corresponds to the basic19 and following18 ranges of values of � and Re. The
bifurcation pattern is shown in Fig. 1, according to which there is a set of curves �(n)

k
(b) (the solid curves) and 	(n)

k
(b) (the dashed curves),

n = 1, 2,. . .. Analysis of the solutions of the non-linear boundary-value problem suggests that the subscript k can take three values: 2n ∓ 1
and 2n for each value of n. In order to describe the flow processes it is advisable to introduce ranges of values of the parameter b ≤ 0. Within
these ranges, there is substantial qualitative reorganization (bifurcation of the velocity) of the flows when the parameter b is reduced, that
is, when Re is increased.
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Fig. 1.

The first region (n = 1) of values of (b, �), (b, 	) has been investigated in detail19 using of the procedure of continuation with respect
to the parameter b ∈ [b(1)*, 0], (b(1)* ≈ −21.7) and the known analytical solution for b = 0, including for larger values of �. The existence of
single-mode �(1)

1 (b), 	(1)
1 (b) and triple-mode �(1)

3 (b), 	(1)
3 (b) flows has been established for which purely radially divergent (y > 0) flows or

flows, which are divergent (y > 0) in the central part and convergent (y < 0) along the boundaries of the diverging channel, occur respectively.
In the graphs shown below, each curve y(n)

k
(x) is actually the fluid velocity profile on an arc of a circle of arbitrary radius with centre at the

vertex of the diverging channel. The order k of a flow mode is determined by the number of intersections of the abscissa by the function
(the number of internal nodes is equal to k − 1). At the same time, the integral of any function y(n)

k
(x) in the interval 0 ≤ x ≤ 1 is equal to the

normalized power of the source Q = 1. As has been pointed outs the subscript denotes the number of the range (n = 1, 2) of the change in
the parameter b = −2�Re.

A single-mode flow exists when −18.8 ≈ b(1)
∗ ≤ b ≤ 0 and the corresponding triple-mode flow when b(1)∗

1 ≤ b < 0. In the range b(1)∗
1 <

b < b(1)
∗ , the functions � (1)

3 and �(1)
3 are two-valued, which suggests the previously unknown possibility of two different triple-mode flows

being generated by a single-mode flow. These flows disappear when b, b < b(1)* becomes smaller. A single triple-mode flow, corresponding
to � (1)

3 and �(1)
3 , exists for b ∈ [b(1)

∗ , 0] and, also, as has been noted, one single-mode flow. Moreover, two previously unknown two-mode
asymmetric flows (the possibility of which was postulated in Refs. 2 and 9) exist in the above-mentioned range: there is a forward flow
of the fluid close to one of the walls and a backward flow close to the other wall (and vice versa). These flows occur b(1)

∗ < b < 0 and
subsequently, when the parameter b < 0 decreases, they degenerate when b = b(1)

∗ and disappear for b < b(1)
∗ .

Note that the quantities |�(1)
2 | and |	(1)

2 |, and, also, |�(1)
3 | and |	(1)

3 | approach infinity extremely rapidly when b → −0, that is, the corre-
sponding curves (and flows) cannot be obtained using the procedure of continuation with respect to the parameter b for b ≤ 0. In particular,
when b = −1, we have �(1)

3 ∼ −103, 	(1)
3 ∼ 104. Hence, the first range is characterized by two critical values of b. The value b(1)

∗ is a triple

point at which bifurcation of one-, two- and three-mode flows occurs. Moreover, �(1)
1 = 0 at this point. The quantity b(1)* corresponds to the

turning point of the curves �(1)
3 (b) and 	(1)

3 (b) and determines the boundary of the first range. The series of curves �(1)
k

, 	(1)
k

(k = 1, 2, 3)
corresponding to the first bifurcation point has for the most part been described in Ref. 19. The basic qualitative property of the flow pattern
when b(1)

∗ < b < 0 consists of the existence of a stable single-mode flow y(1)
1 (x).

The second bifurcation point b(2)
∗ can be successfully determined using a numerical-analytical procedure,20 and the second range of

values of b:b(2)* ≤ b ≤ b(1)* found on the basis of it where, as it turns out, three-, four- and five-mode flows are possible; one- and two-mode
processes do not exist. The qualitative behaviour of the curves �(2)

k
(b) and 	(2)

k
(b) is in many respects similar to the behaviour of the curves

�(1)
k

(b) and 	(1)
k

(b) for the corresponding values of the subscript k (see Fig. 1). However, unlike the functions �(1)
1 and 	(1)

1 , the limiting values

of which are bounded when b = −0, the functions corresponding to them � (2)
3 → −∞�(2)

3 → ∞ when b → −0. Furthermore, the curves |�(2)
k

|
and |	(2)

k
| increase and tend to a vertical asymptote considerably more rapidly when b → −0. For example, the values �(1)

3 ≈ −70, 	(1)
3 ≈ 103

and the values �(2)
5 ≈ −670, 	(2)

5 ≈ 104 corresponding to them follow from the calculations when b = -10 (see Fig. 1).

The second range (n = 2) has two similar critical points which prove to be the end points of the second range b(2)∗, b(2)
∗ . The value b = b(2)*

is a turning point of the curves �(2)
5 , 	(2)

5 (b(2)∗ ≈ −80.44). The value b(2)
∗ is a (triple) bifurcation point, in the neighbourhood of which

the indicated three branches of the steady-state flows (b(2)
∗ ≈ −75.39) exist. Moreover, �(2)

3 = 0 at this point. In the range b(2)∗ < b < b(2)
∗ ,

the functions �(2)
5 and 	(2)

5 are two-valued, and two five-mode flows correspond to each value of b. The functions are single-valued when

b(2)
∗ ≤ b < 0, that is, a single flow pattern of the above-mentioned form occurs. There is an analogy with the two three-mode flows pattern

for the domain with index n = 1. The four-mode flows (two of them when b > b(2)
∗ contain alternating ranges of forward and backward flows

and a forward flow close to one wall induces a backward flow close to the other wall. On the axis of the diverging channel y(2)
4 = 0. Half of

the flow rate is in each half of the diverging channel. This effect is significant from a hydromechanical point of view since, as was noted
above, it also proves that, when the velocity on the axis of a diverging channel or a converging is specified6,7, the class of solutions with
zero velocity on the channel axis is discarded.
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Fig. 2.

It follows from Fig. 1 that a single three-mode flow, corresponding to the curves �(2)
3 and 	(2)

3 , exists in the range b(2)
∗ < b < b(1)∗. It is

extendable into the range b(1)* ≤ b < 0. When b = b(1)*, there are two flows (�(1)
3 and 	(1)

3 are added), in the range b(1)∗ < b < b(1)
∗ there are

three flows (due to �(1)
3 and 	(1)

3 being two-valued) and, finally, when b(1)
∗ < b < 0, there are two three-mode flows. Numerical-analytical

investigations show that there are no other one-, two- or three-mode flows when b(2)
∗ < b < 0. The pattern of possible flows which has been

reported is unknown in the literature since its establishment using a speculative approach (from general considerations) is problematic
and, in our opinion, hopeless.

The velocity profiles y(1)
k

(x) for the first range of values of b have been constructed and studied in detail19 for various values of the angle

�. They correspond to the analysis presented above for B = 10◦. The functions y(2)
k

(x) for the value b = −60 are shown in the upper part of

Fig. 2; both of the four-mode profiles y(2)±
4 (x) are represented. When the parameter b is increased, the spread of all the curves becomes

considerably greater. It increases by an order of magnitude when b = −10 (the lower part of Fig. 2). Note that the total area of the figure
under each curve is equal to unity (the normalized flow rate) with a very small error z(2)

k
(1) ∼ 10−5 (see (2.2)).

4. General characteristics of the flows of a viscous fluid in a diverging channel

The further investigation of a higher order bifurcation pattern involves the determination of the following triple points b(n)
∗ , finding the

ranges b(n)∗ ≤ b < b(n−1)∗ and constructing the families of curves �(n)
k

and 	(n)
k

as functions of the parameter b for b(n)* ≤ b < 0. We recall that
the values of the index n = 3, 4,. . . indicate the number of the interval, while the possible values of the subscript k (the number of modes)
is a function of the number of the range n. From the above analysis, it follows that k = 2n − 1, 2n, 2n + 1.

A fragment of the flow bifurcation pattern in the neighbourhood of b = b(3)
∗ for the third range −176.5 ≈ b(3)∗ ≤ b < b(2)∗ is shown in

Fig. 3 which corresponds to with substantially greater values of the required quantities than in the preceding ranges. The behaviour of
the family of curves �(3)

k
and 	(2)

k
, where k = 5, 6, 7 is similar to that studied above for n = 1, 2 when k = 1, 2, 3 and k = 3, 4, 5. Five- six- and

seven-mode flows exist in the neighbourhood of the triple bifurcation point b = b(3)
∗ ≈ −169.5 and, moreover, �(3)

5 = 0 when b = b(3)
∗ . There

are no flow patterns with a number of modes k < 5. The critical value b = b(3)∗ is the boundary of the range and the turning point of the
curves �(3)

7 and 	(3)
7 . For n = 3, the curves �(n)

k
and 	(n)

k
tend to the vertical asymptote when b → −0 more rapidly than in the case when n = 1,

2.
There are qualitatively similar patterns for arbitrary n ≥ 4. They are accompanied by an increase in the values of �(n)

k
and 	(n)

k
and

variations of the velocity profiles y(n)
k

(x).
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Fig. 3.

Analysis suggests that, in the case of an asymptotically small value �(0 < ��10◦), the critical points b(n)
∗ , at which � (n)

2n−1 = 0, are also the
site of bifurcation of the flows (triple points) which are distributed according to the rule:

(4.1)

(see the cases n = 1, 2, 3 above). The dependence b(1)
∗ (b) is determined graphically in the whole domain of existence 0 < � ≤ �/2. The

boundary points b(n)∗ < b(n)
∗ are shifted by a small amount to the left (of the order of a few units), which increases appreciably as n becomes

larger. Hence, the distance between the points b(n+1)
∗ and b(n)

∗ is approximately equal to 6�(2n + 1)., that is, it increases quite rapidly as n
becomes larger. The ranges b(n+1)∗ − b(n)∗ have the same length.

5. Conclusion and inferences

The solution of the Jeffery1 problem has been constructed over a wide range of variation of the Reynolds number using the numerical-
analytical method of accelerated convergence18–20 for a specified aperture angle of the diverging channel. The bifurcations in the flow
pattern, which are unknown in the literature, have been constructed and the non-uniqueness of the multimode flows has been established.

It has been shown that, when the Reynolds number is increased from the value Re(1)
∗ = |b(1)

∗ |/(2�), there are no purely diverging single-
mode flows. The single-mode flow, which is symmetrical about the channel axis, is replaced by a three-mode flow and there is a range of Re
values for which two symmetric three-mode velocity profiles exist (see Fig. 1), which are generated by a bifurcation of the single-mode flow
pattern. In the neighbourhood of the bifurcation point, the existence of two asymmetric two-mode flow patterns is established together
with the three-mode flow patterns. The velocity profiles are antisymmetric to one another about the channel axis and exist for the values
0 < Re < Re(1)

∗ .
An increase in the Reynolds number leads to a second point of bifurcation b(2)

∗ (see relations (4.1) and Fig. 1) in the neighbourhood
of which there is a single three-mode flow and two five-mode flows which are symmetrical about the channel axis as well as two four-
mode flow patterns which are antisymmetric to one another. The pattern of change in the flow is similar to that considered for the first
bifurcation value of the Reynolds number. Note that all the four-mode flow velocity profiles have a node on the channel axis; they exist when
Re < |b(2)

∗ |/(2�) = Re(2)
∗ . There are two five-mode flow patterns in the range |b(2)

∗ | < 2�Re ≤ |b(2)∗|. When Re(2)* = |b(2)*|/(2�) and Re ≤ Re(2)*,
there is a single five-mode and a single three-mode flows, which are generated by the second bifurcation point.

Calculations, corresponding to the third bifurcation point b(3)
∗ (4.1) have been presented (see Fig. 3). In the neighbourhood of this point,

there are a five-mode, two six-mode and two seven-mode flow patterns. The flow patterns are similar to those indicated above. The odd-
mode velocity profiles are symmetrical about the axis of the diverging channel. The even-mode (six-mode in the given case) processes
turn out to be antisymmetric and they can be represented as a combination of even-mode flow-patterns of lower order (three two-mode
flow-patterns in this case).

The basic properties of flows for the subsequent ranges can be described on the basis of a qualitative analysis of the flow of a viscous
fluid for the first three ranges. We emphasize that, in the case of the first range of values 0 < Re < |b(1)

∗ |, in addition to the main single-
mode purely diverging flow there are two pairs each of two-, three-, four- and so on multimode flow patterns. When the Reynolds number
increase further, an analogous exclusion of flow-patterns with modes k = 2n, 2n − 1 occurs, where n is the number of the bifurcation point
and the interval.

Calculations suggest18,19 that, when the semi-apertur angle is reduced � ∈ (0, 10◦), the solutions of the Jeffery problem are found to be
qualitatively and quantitatively very close. An increase in the angle (10◦ < � ≤ 90◦) leads to solutions, the behaviour of which qualitatively
corresponds to what has been described above. The main difference lies in the reduction in the values of b(n)

∗ and b(n)* and the corresponding
values of the Reynolds number (see rule (4.1)). Considerable differences arise when 90◦ < � ≤ 180◦ which corresponds to diverging channel
aperture angles greater than for an unfolded diverging channel which requires additional investigation.
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